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Abstract Formulae for hermitian operators representing
covalent, ionic, and total bond indices are derived. The eigen-
states of these operators come in pairs, and can be considered
as bonding, anti-bonding and lone-pair orbitals. The form of
these operators is derived by generalising the rule that the
bond order be defined as the net number of bonding elec-
tron pairs. The percentage of covalency and ionicity of a
chemical bond may be obtained, and bond indices can also
be defined between groups of atoms. The calculation of the
bond indices depends only on the electron density operator,
and certain projection operators used to represent each atom
in the molecule. Bond indices are presented for a series of
first and second row hydrides and fluorides, hydrocarbons,
a metal complex, a Diels–Alder reaction and a dissociative
reaction. In general the agreement between the bond indices
is in accord with chemical intuition. The bond indices are
shown to be stable to basis set expansion.

Keywords Bond index · Bond order · Ionic bond index ·
Covalent bond index · Roby projection operator

1 Introduction

The role that quantum chemical calculations play in solving
chemical problems can be summarised as follows.
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1. High level formulation The chemical problem is first
defined in terms of high level concepts and language.
For example, an organic chemist might ask: “How do I
modify a particular molecule with substituents to favor
a particular reaction?”.

2. Quantum reformulation with simplifying hypotheses The
problem is then re-phrased in the language of quantum
chemistry. Now the problem is invariably too complex
to handle, so a range of hypotheses must be formulated
about the properties which are relevant to the problem.
For example, the organic chemist might postulate a num-
ber of possible candidate substituents, and then hypothe-
size that the predisposition of the substituted molecules
to reaction is closely correlated to energy differences
associated with the detailed stereoscopic arrangement of
a limited number of the atoms in the molecule.

3. Quantum chemical calculations Finally, in the end-
game, quantum chemical calculations are performed on
a list of candidate geometric structures. The solution to
the original problem is then selected as the best choice
from this reduced list of possibilities.

Computer calculation methods in quantum chemistry pio-
neered by John Pople and others [1] are now highly develo-
ped, so the end-game is less an obstacle than it once was. On
the other hand, techniques which help in the formulation of
the initial problem and which help in formulating the hypo-
theses which reduce the problem complexity are less well
developed.

To be specific: how does the organic chemist choose the
substituents and geometric structures to be submitted for
quantum mechanical calculation? Obviously these decisions
are not made in vacuo. Instead, there is a body of very import-
ant “higher level” knowledge which is drawn upon both to
phrase the initial hypothesis, and to limit the possibilities that
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should be investigated. All this is done before the quantum
mechanical calculations are performed.

These “higher level” or “valence” concepts we allude to
are those that are central to chemistry. For example, the
concept of a molecule composed of “atoms” with certain
properties quite different to those of the isolated atom. Or,
the concept of a “bond” between atoms in a molecule, often
drawn as lines between the atoms, and which is used to clas-
sify the strength of the interactions between atoms. The “bond
order” allows intuitive guesses to be made about the kind of
reactions that the bonded atom might be involved in, and it
allows a prediction of the number and type of atoms that
might be found as neighbours.

Chemists have noticed empirically that atoms or groups
of atoms which have a common geometric motif and bon-
ding pattern often behave collectively in more-or-less the
same manner. They have rationalized the properties of these
“functional groups” of atoms in terms of other higher level
concepts such as “charge”, “reactivity”, “electronegativity”,
“hardness”, or “softness”, and simple rules or theories have
been proposed that explain the relationships expected bet-
ween these concepts. These are very useful concepts which
greatly aid in thinking about complex chemical problems,
help in reducing their complexity, and help in predicting che-
mical behaviour. Because of their utility, these concepts per-
sist today, despite the fact that there is no natural definition
for them within quantum theory.

It is the purpose of this paper to make a link between quan-
tum chemistry and traditional notions of a chemical bond.
Specifically, we furnish here a rigorous definition of what
is meant by a chemical bond within quantum mechanics. In
this way, the process by which chemical problems are solved
and formulated will be enhanced, since the quantum chemi-
cal calculations would provide not only numerical results,
but also qualitative bonding information important in obtai-
ning insight and understanding in terms of broader chemical
concepts whose utility is well established.

1.1 New definitions for the covalent and ionic bond order

According to Pauling [2], a bond between two atoms may be
said to have a certain amount of covalency or ionicity [2].
The covalency and ionicity of a bond are very useful qualita-
tive concepts for chemists, and Pauling was the first to give
a quantitative measure of these concepts based on the elec-
tronegativity differences of the atoms involved in the bond.

In this paper we present a new definition of bond order,
which we call the bond index. The bond index is defined
in terms of two other indices: the covalent bond index and
the ionic bond index. These two indices are defined in the
usual way for quantum mechanical observables, as the expec-
tation value of two different hermitian operators. Together,
these bond indices yield an estimation of the percentage of

covalency and ionicity of a bond which can be calculated
from any quantum mechanical wavefunction.

Our development of the bond index formula builds upon
Roby’s projection operator theory [3–6], which was based on
ideas originally proposed by Davidson [7], and has since been
developed also by others [8–10]. In Roby’s theory, an atom A
is represented by a projection operator PA in a Hilbert space,
while a group of atoms A . . . B is represented by a projection
operator PA...B . These projection operators admit a rigorous
and elegant definition of atomic populations, group populati-
ons, populations “shared” and “transferred” between atoms,
and between groups of atoms. The sharing of electronic popu-
lation between a pair of atoms is the essence of covalency,
whilst the transfer of population is the essence of ionicity.
The definition of shared and transferred populations leads
naturally to definitions of the Roby (or “covalent”) operator
R, and a corresponding “ionic” operator I ,

R = PA + PB − PAB, (1)

I = PA − PB . (2)

When these operators are “normalised”, we obtain the ionic
and covalent bond index operators, whose expectation value
is used to calculate the ionic and covalent bond indices bet-
ween two atoms, respectively

ĉAB = R

2|R| , (3)

î AB = I

2|I | . (4)

(The absolute value of an operator, say |R|, is defined by the
fact that it has the same eigenstates as the operator R, but
the corresponding eigenvalues of these eigenstates are the
absolute values of those for R).

It is worth emphasizing the key features of the bond indices
introduced in this paper that set it apart from the many other
definitions of bond indices:

– The formulae for the bond indices depend only on the one-
electron reduced density matrix and certain hermitian
projection operators which define the atoms; hence the
formulae can be applied to any type of ab initio wave-
function, and are independent of the basis set used to
expand the wavefunction.

– Upon increasing the basis set size used to expand the
wavefunction, the bond indices converge smoothly to a
limit.

– When appropriate covalent and ionic bonding and anti-
bonding orbitals are defined, as eigenstates of the covalent
and ionic operators, the covalent and ionic bond indices
can be derived according to the usual rule for a bond index
in a homonuclear diatomic molecule, as half the diffe-
rence between the number of electrons in the bonding
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and anti-bonding orbitals i.e., the net number of bonding
electron pairs.

– Together with the total bond index, the covalent and ionic
bond indices allow the percentage of covalent and ionic
character of a bond to be calculated.

– The ionic bond index is defined on equal terms with the
covalent bond index.

1.2 Continuing interest in bond orders

Several examples are now discussed to show that the bond
order concept continues to play an important role in theore-
tical and experimental sciences. We also mention how our
work impacts on these examples.

– In 1997, Robinson et al. [11] reported the synthesis of
a compound which was claimed to have the first exam-
ple of a Ga–Ga triple bond. Shortly afterwards, another
compound was described by the same group having the
shortest Fe–Ga bond on record, also claimed to be a tri-
ple bond [12]. Controversy surrounded these publications
concerning whether the bonds concerned were actually
triple bonds, and the papers spawned further theoretical
and experimental studies [13]. The arguments and con-
troversy surrounding the existence of these triple bonds
is, in our opinion, not as important as the fact that the
bond index was used as a marker to recognise a new and
unusual kind of chemical compound. More recently, in
2005, Nguyen et al. [14] reported the synthesis of a new
compound displaying a Cr-Cr quintuple bond [15]. Att-
empts to formalise a definition of bond order, as in this
paper, are relevant to these synthetic and theoretical att-
empts to clarify the notion of bonding in unusual com-
pounds.

– Bond orders are routinely obtained from electron den-
sities measured by X-ray diffraction experiments [16].
Here, the bond order is not the number of electron pairs
associated with the atom–atom interaction, but it is the
value of the electron density at the bond critical point on
the topological “bond path” connecting the bonded atoms
[16]. The bond index formula we propose in this paper
requires the electron density matrix, but such density
matrices can nevertheless also be obtained from accu-
rate X-ray experiments [17,18]. Thus the bond index
formula we present here could also be derived from
experiment.

– Physicists have realised that quantum mechanical calcu-
lations do not offer by themselves a sufficiently simple
and informative model to understand solid state struc-
ture. The electron localisation function (ELF) has been
introduced with some success in these explanatory efforts
[19]. The topological attractor basins of the ELF have
been found to be correlated with classical notions of

chemical bonding i.e., number of bonds, lone pairs, and
so on [20]. Our work provides an alternative to this ELF-
based approach.

1.3 Outline of the paper

There is, of course, a very large literature on the subject of
bond indices derived from quantum mechanics—a fact which
further highlights the interest in the bond index concept, and
indicates the variety of opinions and approaches which exist.
Only a brief summary is given here, in the following section;
for more details we refer to the extensive review of the bond
order literature prior to 1992, by Sannigrahi [21].

The bulk of this paper is devoted to the derivation of
the bond index formula. For the most part, mathematical
theorems are proved and used. The physical content of our
formulae can be traced to two main sources:

1. In the arguments which motivation the choice of the ope-
rators themselves.

2. In the definition of the atomic projectors which define
the atoms.

Illustrative calculations are presented for the bond indices
in a range of molecules, including the bond indices during
reaction and bond-breaking processes. Some deviations from
chemical expectations are noted and discussed, and our con-
clusions are given in the final section.

2 Bond indices from quantum mechanics: a brief review

The origins of the bond index concept date back to sim-
ple MO theory. There, the bond order is defined as half of
the difference between the number of electrons in bonding
orbitals and the number of electrons in anti-bonding orbi-
tals. However, such a definition can only be applied to diato-
mics. Coulson [22] was the first to provide a definition that
could be applied to polyatomic molecules. Not long after,
Chirgwin [23], McWeeny [24,25], and Mulliken [26,27],
among others, contributed further definitions. All these defi-
nitions depend linearly on elements of the first order den-
sity matrix, as does our definition. Wiberg [28], on the other
hand, introduced a bond order definition that depends qua-
dratically on the density matrix, and also called it a bond
index. (Other names for bond index that have appeared in
the literature include: bond valency, bond order index, and
degree of bonding).

Mayer [29] was the first to initiate the ab initio calcula-
tions of bond indices (in contrast to the semi-empirical cal-
culations done earlier) using definitions based on Mulliken’s
population analysis. Other ab initio bond order definitions
are based on Löwdin’s population analysis [30]. A common
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feature of these definitions is that they were developed for
single determinant HF calculations. However, the same for-
mulas are commonly used for correlated wavefunctions, once
the first order density matrix is extracted (for an exception
see [31]).

Sannigrahi [21] notes that the indices introduced by the
afore-mentioned researchers measured the number of elec-
trons on atom A covalently bonded to those on atom B.
However, he states that “Deviations from classical integral
values are ascribed to the ionic character of the bonds.” Thus
a crude measure of the covalency or ionicity of bond could
be obtained.

Another operationally complicated but popular definition
of bond order is due to Weinhold and coworkers [32], who
have extensively developed the early ideas of atomic hybri-
disation into the “natural bond orbital” method. The natural
atomic and bond orbitals of this method are localised over
one and two atomic centres, respectively, thus facilitating
descriptions of the molecule in terms of valence concepts
such as atomic charge, bond order and valence.

Cioslowski and Mixon [33,34] have extended Bader and
coworkers theory of atoms in molecules (AIM) [35] to define
“covalent” bond orders for bonds connecting “atomic bas-
ins”. Additionally, they defined the degree of ionicity of a
bond in terms of relative population differences between the
pair of atoms that form the bond. Cioslowski and Mixon’s
definition of bond order is given in terms of localised orbitals
and the AIM partitioning of space, and therefore its “form”
is not strictly invariant to a unitary transformation; Ángyán
et al. [36] extended the definition so that it was. Raub and
Jansen [37] have proposed to derive an indication of bond
polarity by combining the use of the AIM atomic basins with
those of the ELF.

Fulton [38] has described the use of sharing indices based
on the density matrix amplitude. Bond orders are shown to be
twice these sharing indices, and they have been compared to
the method of Cioslowski and Mixon, mentioned above [39].
The sharing indices are found to be similar to the covalent
bond orders of Ciolowski and Mixon, and do not display
some pathalogical behaviour for the bonds in benzene.

Yamasaki et al. [40] have introduced the correlation ana-
lysis of chemical bonds (CACB) method which uses a hier-
archy of operators to extract chemical valence properties
from molecular wave functions. These operators include a
non-hermitian bond order operator, whose expectation gives
the same formula as obtained by Mayer and others in their
statistical interpretation of bond order.

To summarise, it appears that the concept of an ionic bond
index has not yet been separately defined anywhere in the
literature, on an equal footing with the covalent bond index.
Neither have hermitian operators been associated with these
bond indices. Nor have bond indices been defined between
functional groups of atoms.

3 Covalent, ionic, and total bond indices

In order to motivate the definition of the covalent, ionic, and
total bond indices, it is necessary to first review the basic con-
cepts of Roby’s population analysis scheme. Another key step
is the introduction of a new definition of the ionic transfer
population, which complements Roby’s original definition of
shared population. Both the shared population and the ionic
transfer population are the expectation value of two opera-
tors, the Roby and ionic operators, respectively. We demon-
strate that the Roby and ionic operators are connected by
an interesting pythagorean relationship. Furthermore, their
eigenstates occur in pairs, and the corresponding eigenvalues
maximise or minimise the shared and ionic transfer populati-
ons: effectively the Roby and ionic operators define bonding
and antibonding orbital pairs which we argue are appropriate
for the description of covalent and ionic bonding. The for-
mula for the bond indices then follows by applying the usual
rule for bond order, as half the difference in the populations
of the bonding and antibonding orbitals.

3.1 Atoms, atomic projection operators and populations

One of Roby’s central ideas is that the electrons in an atom
should be represented by a set of one-electron basis functions.
More specifically, it is the vector space VA represented by the
span of these basis functions which is defined to be the atom,
which we hereafter refer to as the Roby atom. Then, given a
reduced one-particle density operator

ρ =
∑

i j

|ηi 〉λi 〈ηi |, (5)

defined in terms of natural orbitals |ηi 〉 and occupation num-
bers λi , the population n A associated with a subspace VA is
given by

n A = 〈PA〉 ≡ Tr(ρPA), (6)

where PA is the projector onto the basis functions of subspace
VA. If {|i〉} is a basis for the subspace VA, then it is easily
verified that the projection operator PA onto VA is given
explicitly by [41]

PA =
∑

i j∈A

|i〉S−1
i j 〈 j |, (7)

where S−1
i j is an element of the inverse of the overlap matrix

between elements of the basis set,

Si j = 〈i | j〉. (8)

It is important to note two points. First, while the details of
choosing the basis functions for space VA are crucial from a
physical point of view, the selection of these basis functions
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is not important for the definition of the bond index formu-
las presented below. We will specify in detail our particular
choice later: essentially they will be the occupied natural
orbitals associated with the atom centered at the position of
atom A. Second, a Roby atom may be comprised of a number
of different physical atoms. For example, if the Roby atom
was comprised of the atom pair A and B, the population of
this atom pair would be given by

n AB = 〈PAB〉 , (9)

where PAB is the projection operator for the subspace VAB =
VA + VB , the subscript “AB” being used to denote “sum of
spaces A and B”.

3.2 Shared and ionic populations

It is important to keep in mind that the Roby atoms of a
molecule in general overlap. The consequence of this is that
the sum of the populations on each atom in the molecule,
as calculated by Eq. (6), is not equal to the total number of
electrons in the molecule. Thus, for a pair of atoms A and B,
n AB as defined by (9) does not necessarily equal n A + nB .
The difference between n AB and n A + nB is a measure of of
the electronic population that is shared between the atoms A
and B. Thus Roby defined the shared population as

sAB = n A + nB − n AB, (10)

which can be written as

sAB = 〈R〉 , (11)

where R is the Roby (or “covalent”) operator already defined
at the start of the paper (equation (77) in reference [4]),

R = PA + PB − PAB . (12)

The amount of electron sharing between a pair of atoms
is intuitively related to the bond strength and “covalency”
between these atoms. Consequently, the Roby operator (12),
whose expectation gives a measure of electron sharing, can
be naturally associated with the concept bond strength, and
in particular covalency.

Complementing the concepts of electron sharing and cova-
lency are the concepts of charge transfer and ionicity. For a
particular pair of atoms A and B in a molecule, the amount
of charge transfer between the pair is related to the difference
in the populations on those atoms minus their atomic charge,
that is,

i AB = n A − nB + Z B − Z A = 〈I 〉 + Z B − Z A. (13)

We shall refer to i AB as the “ionic transfer population”. The
Ionic operator was already defined at the start of the paper as

I = PA − PB . (14)

The following subsections demonstrate that the properties of
R and I defined in this way are most useful for developing
ideas of covalent and ionic bonding.

Our principal focus in this paper is the bond between atoms
A and B. Since the operators R and I only involve the
spaces VA and VB associated with the bond between atoms
A and B, we therefore restrict our discussion to the space
VA + VB in the rest of the paper. With this restriction, the
projection operator PAB becomes the identity operator i.e.,
PAB = 1 in Eq. (12).

3.3 Pythagorean relationship between the Roby and Ionic
operators relation

Using the basic properties of projection operators (e.g., P2
A =

PA and PA PAB = PAB PA = PA) it is easy to show that the
Roby and ionic operators obey the pythagorean relation

R2 + I 2 = 1. (15)

The pythagorean relation is important because it provides
a formal link for the intuitive notion that the concepts of
population sharing and population transfer are in some sense
related and complementary. With this in mind, we will con-
tinue with a description of the properties of the operators R
and I , and R2 and I 2.

3.4 Commutation properties of the Roby and Ionic
operators: paired eigenspaces

Even though both the Roby operator R and the ionic ope-
rator I , are constructed from projection operators, they are
not themselves projection operators. Neither do these ope-
rators commute; in fact, it is easy to show that R and I
anticommute. In appendix A it is shown that this implies that
the eigenstates of R and I come in pairs whose eigenvalues
have opposite sign.

Despite the fact that R and I do not commute, it is
straightforward to show that R2 and I 2 commute with both
PA and PB , and hence also with each other. A consequence
of the fact that R2 and I 2 commute is that they may share
a common set of eigenstates.

3.5 Angles for labelling the paired eigenspaces of the Roby
and Ionic operators

Since R2 and I 2 share a common set of eigenstates, accor-
ding to the pythagorean relation, their eigenvalues for a par-
ticular simultaneous eigenstate sum to one. In appendix B a
stronger result is demonstrated: namely, that the eigenvalues
of R2 and I 2 lie between zero and one. It is therefore pos-
sible to assign an “angle” θ to the simultaneous eigenstates
of R2 and I 2, such that for a given simultaneous eigenstate
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|θ〉 the eigenvalue of R2 is cos2 θ while the eigenvalue of
I 2 is sin2 θ ,

R2|θ〉 = cos2 θ |θ〉, (16)

I 2|θ〉 = sin2 θ |θ〉 (17)

In fact, the Roby and ionic operators are closely related
to Araki’s angle operators [42], which generalise the notion
of an angle between two lines (i.e., two monodimensional
vector spaces) to angles between multidimensional spaces.
According to Araki, the cosine of the “angles” θ between
two vector spaces VA and VB are given by the absolute value
of the eigenvalues of R; likewise, the sine of the “angles”
between the two spaces are given by the absolute value of the
eigenvalues of I . Since the eigenstates of the Roby and ionic
operators come in pairs whose eigenvalues have opposite
sign, Araki’s result allows us to write

R | ± cos θ〉 = ± cos θ | cos θ〉, (18)

I | ± sin θ〉 = ± sin θ | sin θ〉. (19)

The eigenstates have been labelled by their corresponding
eigenvalues.

In Appendix C, we prove the equations above and we fur-
ther demonstrate the important fact that the pair of eigenstates
with non-zero eigenvalues, {|± cos θ〉} and {|± sin θ〉}, span
the same subspace. We call this subspace Vθ , Araki’s θ -angle
eigenspace. Araki’s angle provides a convenient labelling for
these eigenspaces. The bond index formula we will develop
later will be expressed initially in terms of these important
paired eigenspaces.

3.6 Properties of the paired eigenstates of the Roby and
Ionic operators: maximum overlap and extreme
population

The Roby and ionic operators have two properties which
link them to qualitative ideas of bonding. These properties
are related to their eigenstates, their associated populations,
and the pairing theorem.

First, consider the pairing theorem and its relevance.
According to the pairing theorem [43] (see also [44]) given
two orthonormalised sets, {|ai 〉} and {|b j 〉} which respec-
tively span the spaces VA and VB , there exist unitary transfor-
mations giving orthonormalised sets, {|a′

i 〉} and {|b′
j 〉}, such

that the overlap matrix 〈a′
i |b′

j 〉 is diagonal in i and j . Fur-
ther, the new basis function pairs {(|a′

i 〉, |b′
i 〉)} are those that

extremise their overlap 〈a′
i |b′

i 〉 with each other [4] (see also
Appendix C). The concept of maximum overlap plays an
important role in many theories of bond formation [45].

The importance of the pairing theorem in relation to the
Roby and ionic operators rests on the following two proper-
ties, proved in appendices C and D:

1. The paired eigenstates of R and I with non-zero eigen-
value, respectively, {|±cos θ〉} and {|±sin θ〉}, are linear
combinations of only two of the maximally overlapping
basis functions e.g., |a′

i 〉 and |b′
i 〉. This strongly suggests

that the paired eigenspaces Vθ of R and I could be used
to develop ideas of chemical bonding.

2. The paired eigenstates of R (and respectively, I ) have
extreme values (either maxima or minima) of the sha-
red population sAB (or respectively, the ionic transfer
population i AB) when restricted to the paired space Vθ .
Consequently the paired eigenstates of R (respectively
I ) can be regarded as bonding and antibonding orbitals
for shared populations (respectively, the ionic transfer
population) within Vθ . This strongly suggests using the
eigenstates of R and I to define bond indices associated
with electron sharing, and ionic transfer.

In a later subsection we use these two key properties to moti-
vate the development of the bond index formulas.

3.7 Meaning of the zero-eigenvalue eigenstates of the Roby
and Ionic operators: linear dependence and
non-bonding orbital

The discussion above has concentrated on the pairing of non-
zero eigenvalues of the Roby and ionic operators. Here we
demonstrate that the zero-eigenvalues of the Roby and ionic
operators also have a useful meaning.

The zero-eigenvalue eigenstates of the ionic operator
belonging to the space Vθ=0 satisfy I |λ〉=(PA − PB)|λ〉=0
(since sin 0 = 0). It can be shown that in this case we must
have |λ〉 ∈ VA ∩ VB . That is, the zero-eigenvalue eigenstates
of I correspond to functions which are linearly dependent.

On the other hand the zero eigenvalue eigenstates of the
Roby operator belonging to the space Vθ=π/2 satisfy R|λ〉 =
0 or (PA + PB)|λ〉 = PAB |λ〉 (since cos π/2 = 0). In this
case, it can be shown that the eigenstates are comprised of the
functions in VA orthogonal to VB and those in VB orthogonal
to VA i.e., |λ〉 ∈ VA ∩ V B ⊕ VB ∩ V A. A physical notion
of what this space means can be given. Assuming that the
spaces VA and VB are defined by atomic natural orbitals on
each atom (see Sect. 3.14 later) we expect that the core natural
orbitals on one atom overlap only weakly with orbitals on the
other atom. Hence these core orbitals can be said to (roughly
speaking) belong to the zero-eigenvalue subspace of the Roby
operator, Vθ=π/2 subspace. Likewise, very diffuse orbitals on
one atom such as valence lone pair orbitals (constructed as
a linear combination of the atomic valence natural orbitals)
would also overlap very weakly with the atomic orbitals on
the other atom, and would also belong to Vθ=π/2. In short,
the eigenstates of Vθ=π/2 are comprised of “non-bonding”
orbitals.
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3.8 The covalent and ionic bond index formula

According to the simple MO theory of homonuclear diatomic
molecules, the bond order is defined as half the difference in
the number of electrons in the bonding and antibonding orbi-
tals. At the same time, we have seen that that the eigenstates
of the Roby and ionic operators, R and I , occur in bon-
ding and antibonding pairs. The populations of each of these
bonding or antibonding orbitals may be calculated according
to Eq. (6), where PA is chosen to be the projector onto the
appropriate bonding or antibonding eigenstate. Thus, we can
combine the bond order rule with the bonding and antibon-
ding orbitals of the Roby operator to obtain a covalent bond
index. Likewise, we can combine the populations of the ionic
bonding and antibonding orbitals to obtain the ionic bond
index.

These considerations can be made more explicit. Specifi-
cally, we define

n±
c =

〈
P±

c,θ

〉
, (20)

n±
i =

〈
P±

i,θ

〉
, (21)

where n±
c are the populations of the covalent bonding and

antibonding eigenstates | ± cos θ〉, n±
i are the populations

for the ionic bonding and antibonding eigenstates | ± sin θ〉,
(the + sign indicates the bonding eigenstate and the—sign
indicates the antibonding eigenstate), and where the covalent
and ionic projection operators are, respectively,

P±
c,θ = | ± cos θ〉〈± cos θ |, (22)

P±
i,θ = | ± sin θ〉〈± sin θ |. (23)

Then the covalent and ionic bond indices for the paired states
with angle θ are defined respectively by

cθ = (n+
c − n−

c )/2, (24)

iθ = (n+
i − n−

i )/2. (25)

According to the previous discussion, n+
c and n−

c are the
maximum and minimum shared populations (respectively)
that can be obtained within the bonding eigenspace Vθ . Like-
wise n+

i and n−
i are the maximum and minimum ionic trans-

fer populations that can be obtained in the same subspace.
The covalent and ionic bond indices are then obtained by
summing over all paired eigenspaces with nonzero eigenva-
lues cos2 θ ,

cAB =
∑

θ<π/2

cθ , (26)

i AB =
∑

θ>0

iθ . (27)

It should be noted that both the covalent and ionic bond indi-
ces can be negative. A negative value for the ionic bond index
only indicates that there is a net excess of electrons on atom

B in a bond in AB. However, a negative value for the covalent
bond index in general indicates a true anti-bonding orbital.

As mention in Sect. 3.7, the eigenspaces where the Araki
angle θ = π/2, Vθ=π/2 contains non-bonding orbitals. Such
orbitals are not appropriate for describing covalent bonding
interactions, and so should not be included in the summa-
tion to for the total bond index vector; hence the restriction
to angles strictly less than π/2 in the formula (26). Alterna-
tively, we can extend the summation over all angles with the
understanding that cθ=π/2 = 0. Likewise, the space Vθ=0

which arises due to linear dependencies between the atomic
natural orbital spaces of atoms A and B offers no possibility
of population transfer from one atom to another, so it is appro-
priate that no ionic bond index should be defined on such
spaces (such spaces may, however, contribute to the covalent
bond index). Hence the restriction to angles strictly greater
than in the formula (27); or alternatively, the summation may
be unrestricted with the understanding that iθ=0 = 0.

3.9 The covalent and ionic bond index operators

The formula for the covalent and ionic bond indices can be
recast in a more elegant form. Consider the operator R/2|R|,
which has the same eigenstates as R except that the non-zero
eigenvalues corresponding to the bonding orbitals are 1/2
while those for the antibonding orbitals are −1/2. That is,

R

2|R| = 1

2

∑

θ<π/2

(| cos θ〉〈cos θ |−| − cos θ〉〈− cos θ |). (28)

Using this definition, it can be seen that the expectation value
of this operator yields the bond index for the covalently sha-
red electrons,

cAB =
〈

R

2|R|
〉
. (29)

i.e., this expectation value gives half the population of elec-
trons in the bonding covalent orbital minus the antibonding
covalent orbital. The formula for the ionic bond index follows
the same line of reasoning: writing the spectral decomposi-
tion

I

2|I | = 1

2

∑

θ>0

(| sin θ〉〈sin θ | − | − sin θ〉〈− sin θ |) (30)

the ionic bond index is given by

i AB =
〈

I

2|I |
〉

(31)

The operators ĉAB = R/2|R| and î AB = I /2|I | are,
respectively, the covalent and ionic bond index operators.
We have thus recast the bond index formula in terms of the
expectation value of two hermitian operators. We note that
the rules of quantum mechanics require that observables be
represented by hermitian operators.
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3.10 The hybrid spin

We have spent some time on the properties of the R and I
operators. However, the operators ĉAB and î AB just defined
are also connected by a relationship, which is used in the
derivation of the formula for the total bond index. If we define

sx = ĉAB, (32)

sz = î AB, (33)

and make the additional definition

sy = i[PA, PB]
2|R||I | , (34)

(note that i in the equation above refers to the
√−1) then it

can be shown that

s2
x = s2

y = s2
z = 1/4 (35)

and also

[sx , sy] = isz, [sy, sz] = isx , [sz, sx ] = isy (36)

That is, the three operators sx , sy and sz obey the same com-
mutation relations as the components of the spin operator
i.e., they obey an SU (2) commutation law. (To see that this
is true consider the representation of ĉAB and î AB in the basis
{| ± sin θ〉}—see appendix C, Eq. (64)—and then define sy

by the last equation above). We therefore call the operator s
the hybrid spin operator.

3.11 The bond index formula

We have seen that the paired eigenspaces of the Roby and
ionic operator admit an elegant definition of the covalent and
ionic bond index. The paired spaces contain orbitals which
have extremes of shared population and ionically transfer-
red population. It seems reasonable that this paired space
should form the basis of a definition of a bond index, one
that includes both the contributions from covalent and ionic
parts. To motivate a bond index formula, we therefore con-
sider the eigenstates which have extreme population 〈PAB〉
within this paired eigenspace. Appendix E shows that these
eigenstates may be easily calculated. If we again use the sim-
ple bond order rule, we may derive a total bond index for the
paired eigenspace. The final result is

τθ =
√

c2
θ + i2

θ (37)

We then define a (total) bond index vector for the subspace
VAB by

τAB =
∑

θ

(cθ , iθ ). (38)

(As will be explained later, for numerical reasons iθ is set to
zero for angles θ > π/2 − ε, where ε is a parameter). The

magnitude of this bond index vector defines the bond index
for the bond between atoms A and B,

τAB = ||τAB || =
√

c2
AB + i2

AB, (39)

The bond index τAB of a bond essentially gives the tradi-
tional bond order of the bond, which, as we will see later,
gives values in very good agreement with traditional chemi-
cal intuitions. Note that the bond index is always a
positive quantity, regardless of the sign of the covalent and
ionic bond indices. The overall bonding or antibonding nature
of the bond must be decided based on the sign of the covalent
bond index.

3.12 The percentage of covalency and ionicity of a bond

The covalent cAB and ionic i AB bond indices just defined give
an indication of how covalent or ionic a bond is. However, it
seems conceptually simpler to refer to the (total) bond index
(39) of the bond together with the percentage of covalency
and/or ionicity of the bond. With this in mind, the percentage
covalency and ionicity of a bond is defined as

% Covalency = 100 c2
AB/τ

2
AB (40)

% Ionicity = 100 i2
AB/τ

2
AB . (41)

3.13 Circumventing problems with the ionic indices for
non-diatomics

In practice, no problems are observed when calculating cova-
lent bond indices for θ close to θ = π/2 and θ = 0, and no
problems are observed for calculating ionic bond indices for
spaces Vθ close to θ = 0. However, problems do arise when
calculating ionic bond indices for values of θ close to π/2.
These problems originate in non-diatomic systems where at
least one of the atoms A or B in the pair is in close proxi-
mity to other atoms, so that charge from these nearby atoms
accumulates in the lone electron pair regions. The result is a
distortion in the charge difference from what might be expec-
ted only from the atom pair AB. To avoid these problems,
which in practice occur only when there are orbitals in angle
spaces with angles close to π/2, we introduce a parameter ε
and set to zero those iθ where θ > π/2 − ε. In this work,
the parameter is chosen so that cos ε = 0.025, which cor-
responds to an angle of about 77◦. Thus, if θ > 77◦ then
iθ = 0.

3.14 Explicit definition of the Roby atom

The definition of the atom used in this paper is that defined
by way of the projection

PW =
∑

i j

|ηW
i 〉S−1

i j 〈ηW
j |, (42)
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where

Si j = 〈ηW
i |ηW

j 〉, (43)

and where |ηW
i 〉 are the natural orbitals of the atom.

At this point, it needs to be noted that the projector can be
defined for a grouping of atoms by defining the space of the
projector to be that spanned by the occupied natural orbitals
of each of the atoms at their respective positions in space (like
a pro-molecule). In this case the natural orbitals between the
atoms on different centers will not necessarily be orthogonal,
and thus the overlap term of in the above expression must be
retained. Whether the Roby atom is a single atom or a group
of atoms is not important to the generalized theory outlined
in the previous sections.

The definition (42) depends crucially on the natural orbi-
tals included in the summation of this projection formula.
The natural orbitals we use are defined in the following way:

1. The one-electron reduced density matrix ρ is obtained
from the atomic wavefunction �A. In this paper, the
Hartree–Fock approximation is used to obtain the ato-
mic wavefunction.

2. The density matrix ρ is spherically averaged to form
ρ [46]. So, for example, Boron in the 1s22s22p1

x state

becomes, loosely speaking, 1s22s22p1/3
x p1/3

y p1/3
z . The

reason for this is that any assigned direction such as px

would imply an arbitrary selection of a particular degene-
rate component of an atomic wavefunction �A, and the
degeneracy of the p-orbitals implies that there should be
no preference for any particular degenerate component.

3. Natural orbitals ηA
i are constructed from this spherical

density ρ,

ρ|ηA
i 〉 = n A

i |ηA
i 〉. (44)

4. The atomic natural orbitals |ηA
i 〉 used to define the atomic

projector are those which have an occupation n A
i greater

than 0.05 electrons.

The cut-off of 0.05 is used because orbitals with small occu-
pation (and presumably with higher energy in the ground
state) are not useful in the description of atomic properties
and by increasing the size of the basis set the projectors will
eventually span the whole space of the molecule. The cut-off
value was chosen so that it would include the 1/3 occupa-
tions of the averaged p-orbitals, the 1/5 occupations of the
d-orbitals, and the 1/7 occupations of the f -orbitals. This
limit for the f -orbital case is about 0.14 electrons, and in
the case of a 1/2 filled f -orbital, the averaging would give
an occupation of 0.07. This value is taken as the limiting
case for electron occupation in an atom. The figure 0.05 is

small enough to include these occupations, but large enough
to exclude orbitals of lesser occupation.

It should be emphasized that our definition of an atom is
one among many that may be used. As long as the atom is a
subspace of Hilbert space and can be spanned by a basis set,
then the theory of the previous section can be applied to it.

4 Illustrative calculations

4.1 Details of calculations

The code for calculating the bond indices outlined in the
previous sections was written in the Tonto program [18].
This code evaluates all the atomic SCF calculations required
to define the Roby atoms in the molecule. The molecular
density matrices can also be calculated in the Tonto package,
but for this paper they were calculated using the Gaussian
program [47]; an interface to read the Gaussian “checkpoint”
file was written to facilitate easy usage of the Tonto program.

For evaluating the bond indices, a range of test molecules
was studied that would assess the applicability of the indices
to chemistry. Molecules were also chosen that would allow
comparison with the results obtained by other workers using
other methods.

The molecules chosen included the set of first and second
row hydrides and fluorides, and the hydrocarbons ethane,
ethene, ethyne and benzene. A small number of related mole-
cules were also chosen for comparison with other analysis
techniques and for demonstrating trends in the bond indices.

Unless otherwise stated, the test molecule geometries were
optimized using Gaussian 98 [47] using double-ζ (DZP)
basis sets [48,49] except for the cases of Na and Mg, where
the gaussian 6-31G∗ basis sets were used. The use of the
Molden graphics package [50] was often helpful in these
calculations.

4.2 The hybrid orbitals of hydrogen fluoride

As a representative example, Fig. 1 presents the hybrid orbi-
tals for hydrogen fluoride using a 6-31G** basis. Populations
are also shown.

The covalent bonding and antibonding orbitals are shown,
with θ = 55◦. They resemble the bonding and anti-bonding
orbitals that might be found in basic chemistry textbooks for
the bonding or anti-bonding orbitals of diatomic molecules—
but it should be made clear that these orbitals are formed
simply from “unoptimized” linear combinations of the hybrid
orbitals situated on each atom of the pair. These orbitals are
not, for instance, energy optimized molecular orbitals.

The ionic bonding and antibonding orbitals are shown,
with θ = 55◦, Like the covalent anti-bonding orbitals, the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 The covalent and ionic orbitals of hydrogen fluoride, using a
6-31G** basis. Solid lines indicate positive contours, dotted lines are
negative contours. Contour increments at 0.1 a.u a covalent anti-bonding
orbital, θ = 55◦, b covalent bonding orbital, θ = 55◦, c ionic anti-
bonding orbital, θ = 55◦, d ionic bonding orbital, θ = 55◦, e first lone
pair orbital, θ = π/2, f second lone pair orbital, θ = π/2, g third lone
pair orbital, θ = π/2, h fourth lone pair orbital, θ = π/2

ionic anti-bonding orbitals are characterised by a deficit of
charge in the bonding region.

The non-bonding θ = π/2 orbitals are also shown, and
they look like the lone-pair orbitals that might be found on an
F atom. Since the single H–F bond corresponding to Vθ=55◦
is made from the 1s ANO on H, plus a linear combination of
the 5 ANO’s on F, there are exactly four orbitals remaining
on the F atom which are exactly orthogonal to this Vθ=55◦
space.

As the orbitals are constructed entirely from the atomic
projection operators, the orbitals will depend only on the
bond distance between H and F within the molecule, and
not on the molecular environment within which these atoms
reside. Only the populations of these orbitals depend on the
molecular environment.

4.3 Comparing definitions of ionicity for a series
of hydrides and fluorides

Tables 1 and 2 present bond indices and percent ionicities.
The difference between Tables 1 and 2 is that in the former,
the bond indices are calculated between single atoms, while
in the latter it is calculated between groups of atoms. Thus
in the former table, the bond index of CH4 is calculated bet-
ween a single C atom and a single H atom, while in latter

Table 1 Bond indices and ionicities for a series of hydrides and
fluorides — bonds between single atoms

Mol. A–B τAH %I Pauling’s %I

H2 H–H 0.985 0 0

LiH Li–H 0.938 29 24

BeH2 Be–H 0.465 8 14

BH3 B–H 0.973 0 2

CH4 C–H 0.958 2 10

NH3 N–H 0.958 8 20

H2O O–H 0.960 16 30

HF F–H 0.962 26 37

NaH Na–H 0.937 24 26

MgH2 Mg–H 0.545 15 20

AlH3 Al–H 0.970 5 13

SiH4 Si–H 0.947 2 7

PH3 P–H 0.927 0 0

H2S S–H 0.939 1 10

HCl Cl–H 0.946 5 20

LiF Li–F 0.938 88 52

BeF2 Be–F 0.749 75 46

BF3 B–F 1.979 56 39

CF4 C–F 1.084 7 31

NF3 N–F 0.959 4 22

OF2 O–F 0.780 2 11

F2 F–F 0.615 0 0

NaF Na–F 0.900 89 54

MgF2 Mg–F 0.782 83 50

AlF3 Al–F 1.374 23 46

SiF4 Si–F 1.173 19 42

PF3 P–F 1.072 18 37

SF2 S–F 0.922 19 31

ClF Cl–F 0.699 20 22
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Table 2 Bond indices and ionicities for a series of hydrides and
fluorides — Bonds between groups of atoms

Mol. A–B τAH %I Pauling’s %I

H2 H–H 0.985 0 0

LiH Li–H 0.938 29 24

BeH2 BeH–H 0.890 20 14

BH3 BH2–H 0.973 0 2

CH4 CH3–H 0.953 2 10

NH3 NH2–H 0.927 7 20

H2O OH–H 0.911 14 30

HF F–H 0.962 26 38

NaH Na–H 0.937 24 26

MgH2 MgH–H 0.882 26 20

AlH3 AlH2–H 0.964 5 13

SiH4 SiH3–H 0.953 2 7

PH3 PH2–H 0.939 0 0

H2S SH–H 0.937 1 10

HCl Cl–H 0.946 5 20

LiF Li–F 0.938 88 52

BeF2 BeF–F 0.941 74 46

BF3 BF2–F 2.701 61 39

CF4 CF3–F 2.103 58 31

NF3 NF2–F 1.019 4 22

OF2 OF–F 0.773 2 11

F2 F–F 0.615 0 0

NaF Na–F 0.900 89 54

MgF2 MgF–F 0.899 83 50

AlF3 AlF2–F 1.636 19 46

SiF4 SiF3–F 2.763 70 42

PF3 PF2–F 1.324 16 37

SF2 SF–F 1.009 18 31

ClF Cl–F 0.699 20 22

it is calculated between CH3 and H. (The bond under con-
sideration is indicated under “A–B”). We have reported the
bond index to three decimal places to facilitate reproduction
of our results.

Most of the bond indices are in accord with chemical intui-
tion, but there are a few exceptional cases. BF3 is most unu-
sual in having a bond index of 1.979, where one might have
expected a value closer to 1. The percentage ionicity shows
that this is due to strong covalent and ionic bond indices. This
effect might be explained by the fact that, in the definition of
the Boron atomic projector, all three p orbitals appear, even
though there is only one p type electron in Boron. Evidently
these p orbitals play a quite significant role in the bond index
formula we have used.

Also presented for comparison are Pauling’s percent ioni-
cities. These are calculated from Pauling’s electronegativity

differences using the formula [2]

% ionicity = 1 − e−1/4|χAB |, (45)

where χAB is the electronegativity difference of atoms A
and B.

An examination of Pauling’s percent ionicities shows that
for the hydrides there is an initial decrease in ionicity follo-
wed by an increase, as one moves across a row of the periodic
table. Intuitively this makes sense, as one would expect the
ionicity to be greater in LiH and HF, where there is a large
difference in electronegativity, than in CH4, where there is
not. For the fluorides, Pauling’s percent ionicities show a
decrease as one moves across a row of the periodic table.
Both these trends in percent ionicity are reproduced by our
indices.

4.4 Bond-indices of some organic molecules

It is customary to examine the series of hydrocarbons ethane,
ethene, ethyne and benzene when evaluating new bond order
techniques, since it is in these situations that the bond orders
of conventional chemistry can be unambiguously assigned.
Additionally, the bonds should have 100% covalent character.
The bond indices and percent covalencies for these cases are
displayed in the upper part of Tables 3 and 4. The lower
part of the tables has a selection of other organic molecules.
(The bond under consideration is indicated under the second
column “A–B”.)

The results presented in Table 3 are fully consistent with
the expectations of a typical Lewis and Kekule resonance
analysis of these compounds. Ethane, ethene, and ethyne
have carbon-carbon bond indices of approximately one, two
and three as expected. Benzene on the other hand, because of
resonance, has a bond index roughly half way between that
of a single bond and a double bond.

Table 3 Bond indices and covalencies for organic molecules — bonds
between single atoms

Mol. A–B τAB %C

C2H2 C–C 2.980 100

C2H4 C–C 2.031 100

C2H6 C–C 0.994 100

C6H6 C–C 1.587 100

N2 N–N 2.896 100

N2H2 N–N 2.005 100

N2H4 N–N 0.932 100

CO2 C–O 2.278 86

H2CO C–O 2.078 91

HCN C–N 2.964 99

Basis 6-31G**//3-21G
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Table 4 Bond indices and covalencies for organic molecules — bonds
between groups of atoms

Mol. A–B τAB %C

C2H2 HC–CH 3.073 100

C2H4 H2C–CH2 2.298 100

C2H6 H3C–CH3 0.963 100

C6H6
1
2 (H3C3–C3H3) 1.951 100

N2H2 HN–NH 2.073 100

N2H4 H2N–NH2 1.041 100

CO2 OC–O 2.782 82

H2CO H2C–O 2.417 85

HCN HC–N 3.053 99

Basis 6-31G**//3-21G

In Table 4 the bond indices are calculated for bonds bet-
ween groups of atoms. The value for benzene was calculated
by considering the bond index between two halves of the
benzene molecule (as groups of atoms) and then halving the
value. Using this atom-group method typically results in hig-
her bond indices compared with those in Table 3, and in some
cases e.g., benzene (1.95) and carbon dioxide (2.78) much
higher indices. The bond indices calculated between single
atoms in Table 3 corresponds more closely to conventional
ideas of a bond index, and leads more consistently to bond
indices comparable with traditional thinking.

4.5 Bond-indices in metal complexes and hypervalency
issues

Aside from looking at conventional systems, an organome-
tallic system was also examined. It is in these systems where
such methods for extracting bond-indices, etc. become most

useful. The complex studied was C2(Ru(CO)2cp)2

(see Fig. 2).
Geometric coordinates for the complex were determined

from X-ray structure analysis of a crystal [51]. The orbitals
were generated from a 3-21G basis.

The bond indices and percent covalencies for this complex
are presented in Table 5. An examination of this table reveals
the following bonding picture for the ruthenium complex:

1. There is negligible direct bonding between the two
Ruthenium atoms.

2. The Ru(1)–cp(1) bond index is larger than that of the
Ru(1)–C(9) bond index, where C(9) is a single carbon
in the cp(1) ring. The Ru(1)–cp(1) bond is roughly half
covalent (44%), half ionic (56%).

3. The acetylene bond is weakened from the ethyne value
of 2.980 (see Table 3) to 1.592 [this is the bond C(3)–
C(4)]. This is consistent with the notion that external
bonding with the ruthenium atoms weakens the inter-
nal C-C bond. The carbonyl bond is similarly weakened.
(Compare the bond index of C(7)–O(21) with those car-
bonyl bond indices in Table 3.)

4. Adjacent C–C bonds within the cp ring are 100% cova-
lent and are approximately single bonds [τAB = 1.065
for the bond C(9)–C(10)].

4.6 The dissocation of O2

Unrestricted QCISD calculations were done for the disso-
ciation of the oxygen triplet state, and bond indices were
calculated. Table 6 presents the data of these calculations.
The data shows a smooth decrease in the bond index as the
oxygens are pulled apart, until a bond length of 3.6419 Å at
which the bond index suddenly drops to zero.

The bonds are 100% covalent. When the bond distance
is close to the minimum energy bond length, there are four

Fig. 2 The Ruthenium
carbonyl,cyclopentadienyl
complex
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Table 5 Bond indices and covalencies for the ruthenium complex

A–B τAB %C

Ru(1)–Ru(2) 0.037 100

Ru(1)–C(3) 0.724 86

Ru(1)–C(3)C(4) 1.364 73

Ru(2)–C(7) 0.897 77

C(7)–0(21) 1.553 97

Ru(2)–O(21) 0.033 71

Ru(2)–C(7) 0.897 77

C(3)–C(4) 1.592 100

C(3)–Ru(2)C(4) 2.010 98

O(21)–C(7)Ru(2) 2.249 93

C(9)–C(10) 1.065 100

C(9)–H(23) 0.733 89

Ru(1)–C(9) 0.219 51

Ru(1)–cp(1) 0.380 44

Ru(2)–cp(1) 0.041 30

cp(1)–cp(2) 0.008 100

Basis 3-21G

Table 6 Bonding indices for O2 at different bond lengths

Bond length Energy τAB

1.0419 −150.0587708 1.805

1.2419∗ −150.1136299 1.693

1.4419 −150.0650365 1.584

1.6419 −149.9973340 1.503

1.8419 −149.9344069 1.456

2.0419 −149.8825646 1.432

2.8419 −149.7817513 0.606

3.2419 −149.7709637 0.536

3.4419 −149.7689773 0.516

3.6019 −149.7681156 0.505

3.6319 −149.7679996 0.503

3.6419 −149.7679634 0.000

UQCISD calculations with a cc-pvtz+6d+10 f basis. Bond length in
Angstroms, energy in Hartree

θ angles ranging from 50◦ to 90◦. As the bond lengthens,
all the angles approach 90◦, at which the covalent index is
zero. Due to a limited numerical accuracy, a point is reached
where angles very close to 90◦ are indistinguishable from
90◦, hence the sudden drop of the bond index to zero.

4.7 Bond indices for a Diels Alder reaction

The bond indices, defined by Eq. (39), were calculated for the
bonds in the Diels Alder reaction: 1,3-propadiene + ethylene

−→ cyclohexene. The bond indices are presented in Table 7
for a calculation using a 6-31G∗ basis. The bonds in these
tables are indicated by the atoms they join, which are given
in Fig. 3. ‘TS’ refers to the transition structure.

The bond indices for reactants and products agree very
well with the structures drawn in Fig. 3. The bond indices for
the transition structure clearly show the intermediate nature
of the bonds as they are in the middle of breaking and refor-
ming.

4.8 Basis set convergence

Table 8 shows that the bond index τAB , defined by (39), and
the covalency, defined by (41), for the bonds of water and
hydrogen fluoride converge with increasing basis set.

Table 7 Bond indices τAB for the Diels-Alder reaction: 1,3-propadiene
+ ethylene −→ cyclohexene, calculated with a 6-31G∗ basis

A–B cyclohexene TS diene + ethylene

1–2 1.937 1.524 1.175

2–3 1.087 1.653 1.964

3–4 1.018 0.553 0.0

4–5 1.031 1.649 2.036

5–6 1.026 0.553 0.0

6–1 1.087 1.653 1.964

Fig. 3 Atom labelling for Cyclohexene, 1,3-propadiene, and ethylene

Table 8 The bond index τAB and % covalency (%C) for the bonds of
water and hydrogen fluoride with increasing basis set quality

Basis τO H %C Basis τH F %C

Water Hydrogen fluoride

STO-3G 0.927 0.948 STO-3G 0.899 0.918

3-21G 0.947 0.860 3-21G 0.943 0.774

6-31G* 0.954 0.838 6-31G* 0.955 0.746

6-31G(d,p) 0.955 0.835 6-31G(d,p) 0.957 0.741
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5 Conclusion

The concepts of chemical bonding developed in this paper
are shown to be elegantly connected with the algebra and
geometry of projection operators. Using these ideas we have
defined a bond index, as well as covalent and ionic bond indi-
ces which are based on the expectation values of hermitian
operators.

An important aspect of this work is that the definition of
the ionic bond index appears on an equal footing with the
covalent bond index, and both are defined by a generalisa-
tion of the bond order rule taught in elementary chemistry
courses. These indices are related to each other by certain
simple pythagorean relations, which enables the percentage
of covalency or ionicity of a bond to be calculated. The bond
indices can be calculated between atoms, or between functio-
nal groups of atoms. Furthermore, the Roby and ionic opera-
tors, which are used in defining our bond indices, are related
to Araki’s angle operators, and the eigenstates of these ope-
rators can be considered as “bonding”, “anti-bonding” and
“lone-pair” orbitals between pairs of atoms.

The formalism presented depends only on the one-electron
density operator and the properties of the projection operators
used to represent each atom in a molecule and hence our defi-
nitions automatically have the required invariance properties
with respect to unitary mixing of basis orbitals. In addition,
the results are stable with respect to basis set extension. The
method is also computationally very simple to implement.

The definitions of the bond indices have been applied to
a series of first and second row hydrides and fluorides, as
well as to some hydrocarbons, a transition metal complex,
and to the reactants, products and transition structures of a
Diels–Alder reaction and a dissociative reaction for O2. The
calculated covalencies and ionicities agree well with intuitive
and traditional views. The bond orders mostly also agree
well with intuition once an adjustment is made to the idea
that bond order is not a scalar, but a two dimensional entity
comprised of covalent and ionic components.

Despite the fact that the theory proposed is largely
parameter free, there was one somewhat ad hoc parameter
introduced to exclude certain angular subspaces from the
bond-index operator. This was deemed necessary for non-
diatomic systems where at least one of the atoms A or B in
the pair is in close proximity to other atoms, so that charge
from these nearby atoms accumulates in the lone electron pair
regions so distorting the ionicity. Further work should consi-
der how this ad hoc parameter could be eliminated from the
theory. A refinement of the definition of the projection opera-
tors associated with each atom, or each pair of atoms, should
also be the subject of further research. This paper has exami-
ned only a few cases in which the bond index formula we
have developed could be applied. Further studies involving
classic three-center two-electron bonds (as in the boranes),

or the topical issues involving quintuple bonds mentioned in
the Sect. 1, are also obvious subjects for future research.
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Appendix

A The eigenvalues of R and I come in pairs of opposite
sign

To see this, we note that R and I anticommute, i.e., RI +
I R = 0. Then if |λ〉 is an eigenstate of R with eigenvalue
λ, then I R|λ〉 = λI |λ〉 = −RI |λ〉. The last equality
shows that I |λ〉 is an eigenstate of R with eigenvalue −λ
which proves that the non-zero eigenvalues of R come in
pairs of opposite sign, i.e., the eigenstates of R2 with non-
zero eigenvalue are doubly degenerate. A similar argument
can be used to prove the same thing for I .

B The eigenvalues of R2 and I 2 are between 0 and 1

To prove this result letψ be a normalized state in the subspace
VAB . Then

〈ψ |I 2|ψ〉 = ||(PA − PB)ψ ||2 ≥ 0 (46)

〈ψ |R2|ψ〉 = ||(PA + PB − 1)ψ ||2 ≥ 0. (47)

But R2 = 1 − I 2 which yields

1 − 〈ψ |I 2|ψ〉 ≥ 0, (48)

from which we deduce

0 ≤ 〈ψ |I 2|ψ〉 ≤ 1 (49)

0 ≤ 〈ψ |R2|ψ〉 ≤ 1 (50)

as required.

C The eigenstates of R and I are a linear combination of
two basis states which extremize their mutual overlap

A state |aθ 〉 ∈ VA which extremises its overlap into the space
VB is, by definition, an eigenstate of the operator PA PB PA

i.e., it is an eigentate of PB restricted to the space VA [3],

PA PB PA|aθ 〉 = λ2
θ |aθ 〉. (51)

Likewise, a state in the space VB which extremises its overlap
into the space VA is an eigenstate of the operator PB PA PB .

PB PA PB |bθ 〉 = µ2
θ |bθ 〉. (52)

From these two equations we have

〈aθ |PA PB PA PB |bθ 〉 = λ2
θ 〈aθ |bθ 〉 = µ2

θ 〈aθ |bθ 〉 (53)
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The last two equations show that |aθ 〉 and |bθ 〉 are orthogonal
(i.e., 〈aθ |bθ 〉 = 0) or λ2

θ = µ2
θ . In the latter case the two

vectors |aθ 〉 and |bθ 〉 may be said to be “paired”. We shall
consider these paired eigenstates in the following. Assuming
λθ �= 0, it can be shown by direct substitution that

|aθ 〉 = PA PB |bθ 〉/λθ , (54)

|bθ 〉 = PA PB |aθ 〉/λθ . (55)

From this it is easy to show that

PB |aθ 〉 = λθ |bθ 〉, (56)

PA|bθ 〉 = λθ |aθ 〉, (57)

λθ = 〈aθ |bθ 〉 (58)

Using the definitions R = PA + PB − 1 and I = PA − PB

a little more algebra shows that

R2|aθ 〉 = λ2
θ |aθ 〉 (59)

R2|bθ 〉 = λ2
θ |bθ 〉 (60)

I 2|aθ 〉 = (1 − λ2
θ )|aθ 〉 (61)

I 2|bθ 〉 = (1 − λ2
θ )|bθ 〉 (62)

Thus |aθ 〉 and |bθ 〉 are also eigenstates of R2 and I 2. (This
is consistent with the fact that R2 and I 2 commute with
PA and PB , hence they also commute with PA PB PA and
PB PA PB ; commuting operators may share a common eigen-
basis). Since the eigenvalues of R2 are by definition cos2 θ

this proves that λ2
θ = cos2 θ . It is now easy to prove by direct

substitution that the eigenstates of R are

| ± cos θ〉 = |aθ 〉 ± |bθ 〉√
2(1 ± cos θ)

. (63)

The eigenstates of I may also be shown to be given by

| ± sin θ〉 = 1√
2
(| + cos θ〉 ± | − cos θ〉). (64)

This proves that the eigenstates ofR andI may be expressed
as a linear combination of only two states |aθ 〉 and |bθ 〉 which
extremise their mutual overlap. The eigenstates of I are
related to the eigenstates of R by a rotation of π/4, and so
they span the same two dimensional subspace Vθ .

D The eigenstates of R2 (respectively I 2) have maximum
and minimum shared population (respectively ionic
population)

It has been stated that the covalent bonding and anti-bonding
orbitals give maximum and minimum shared populations on
an angle eigenspace Vθ . Similarly the ionic bonding and anti-
bonding orbitals give the maximum and minimum difference
populations on Vθ . Here we quantify and prove this result.

To proceed, we must first provide a general definition of
what is meant by the terms “shared population” and “ionic
population” of an orbital. If Q is either the Roby operator,

R, or the ionic operator, I , both of which are hermitian and
commute with Pθ , the projector onto the angle eigenspace
Vθ , then the Q-electron population of angle eigenspace Vθ
is defined by

qθ ≡ Tr[Pθ Qρ], (65)

Note that if Q is the Roby operator R, then qθ = cθ , while
if Q is the ionic operator I , then qθ = iθ . Using the fact that
Q commutes with Pθ , and P2

θ = Pθ it is easily shown that

qθ = Tr[Q PθρPθ ] = Tr[Qρθ ] = 1

2
Tr[{Q, ρθ }]. (66)

where {Q, ρθ } is the anti-commutator of Q andρθ , {Q, ρθ } =
Qρθ+ρθ Q.ρθ is defined by the second equality above, while
the cyclic property of the Trace has been used to get the
final equality. Unlike Qρθ or ρθ Q, {Q, ρθ } is a self-adjoint
operator. The population qv of an orbital v ∈ Vθ can then be
written as

qv ≡ 〈v|1

2
{Q, ρθ }|v〉 (67)

Using the above definition, we now prove that the covalent
(respectively, ionic) bonding and anti-bonding orbitals give
maximum and minimum shared (difference) populations on
Vθ . The orbitals in Vθ giving extreme values of 〈v|Q|v〉 on
Vθ are precisely the eigenstates v± (corresponding to eigen-
values ±q resp.) of Q on Vθ . It follows that these eigenstates
will also give the maximum and minimum values of (67)
provided Q and {Q, ρθ } commute on Vθ , a fact which is now
demonstrated. Since on Vθ , Q has eigenvalues ±q, it follows
that Q2 reduces to a scalar q2 multiple of the identity on Vθ .
Hence on Vθ we have

Q{Q, ρθ } = Q(Qρθ + ρθ Q) (68)

= q2ρθ + Qρθ Q (69)

= (Qρθ + ρθ Q)Q (70)

= {Q, ρθ }Q, (71)

so that Q and {Q, ρθ } commute, which is sufficient to prove
the result.

E The bond index in terms of the covalent and ionic bond
indices, on a particular paired θ eigenspace, Vθ

To motivate the definition for the bond index, consider the
eigenstates of ρ on Vθ . As already mentioned, these will
be the orbitals that have maximum or minimum occupation
numbers in the space Vθ . Using the covalent bonding and
anti-bonding orbitals as basis, the matrix representation of ρ
is

〈cθ |ρ|cθ 〉 =
( 1

2 〈1〉 + 〈sz〉 〈sx 〉 − i
〈
sy

〉

〈sx 〉 + i
〈
sy

〉 1
2 〈1〉 − 〈sz〉

)
, (72)
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where

|cθ 〉 =
( | + cos θ〉

| − cos θ〉
)

≡
( |c+

θ 〉
|c−
θ 〉

)
(73)

and where we have used the definitions of the hybrid spin
operators, and also, for example,

〈c+
θ |ρ|c−

θ 〉 = Tr(ρ|c−
θ 〉〈c+

θ |) = 〈|c−
θ 〉〈c+

θ |〉 . (74)

The expectation values in (72) are taken over the space Vθ .
The eigenvalues of ρ are given by [52]

n±
τ = 1

2
〈1〉 ±

√
〈sx 〉2 + 〈

sy
〉2 + 〈sz〉2. (75)

These eigenvalues are, in fact, the maximum and minimum
total populations that are obtainable within space Vθ . The
expectation of sy can be deleted in the above expression as
sy is self-adjoint and pure imaginary, hence its expectation
is zero. The eigenstates are thus

|τ+
θ 〉 = 1√

ζ 2
θ + 1

(|c+
θ 〉 + ζθ |c−

θ 〉), (76)

|τ−
θ 〉 = 1√

ζ 2
θ + 1

(ζθ |c+
θ 〉 − |c−

θ 〉). (77)

where

ζθ = 〈sx 〉
〈sz〉 +

√
〈sx 〉2 + 〈sz〉2

. (78)

By analogy with the covalent and ionic bond indices, the
bond index on Vθ is defined as

τθ = 1

2
(n+
τ − n−

τ ). (79)

It can be deduced from this that

τθ =
√

c2
θ + i2

θ . (80)

Thus on Vθ , the bond index τθ is a pythagorean sum of the
covalent and ionic bond indices.
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